159 research outputs found

    IDH2 (isocitrate dehydrogenase 2 (NADP+), mitochondrial)

    Get PDF
    Human Isocitrate dehydrogenase (IDH) occurs in three isozymes, IDH1, located in the cytoplasm, and IDH2 and IDH3 located in the mitochondria. IDH functions as part of the tricarboxylic acid (TCA) cycle and catalyzes the reversible conversion of isocitrate to alpha ketoglutarate (α-KG)/2-oxoglutarate (2-OG), thus promoting the activity of dioxygenases that require α-KG as a cosubstrate. IDH1 and IDH2 use NADP+ as a cofactor, producing NADPH in the process (NADPH plays a vital role i

    AFDN (afadin, adherens junction formation factor)

    Get PDF
    Afadin, the protein coded by AFDN (6q27), also known as AF6 or MLLT4, is a cytoskeletal and junction-associated protein that links nectins, transmembrane proteins, to the F-actin (actin cytoskeleton) in a type of cell-cell junctions: the adherens junctions (AJs). Afadin plays an important role in AJs integrity and apical-basal polarity. There is growing evidence of it's role in carcinogenesis

    Network enrichment analysis: extension of gene-set enrichment analysis to gene networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene-set enrichment analyses (GEA or GSEA) are commonly used for biological characterization of an experimental gene-set. This is done by finding known functional categories, such as pathways or Gene Ontology terms, that are over-represented in the experimental set; the assessment is based on an overlap statistic. Rich biological information in terms of gene interaction network is now widely available, but this topological information is not used by GEA, so there is a need for methods that exploit this type of information in high-throughput data analysis.</p> <p>Results</p> <p>We developed a method of network enrichment analysis (NEA) that extends the overlap statistic in GEA to network links between genes in the experimental set and those in the functional categories. For the crucial step in statistical inference, we developed a fast network randomization algorithm in order to obtain the distribution of any network statistic under the null hypothesis of no association between an experimental gene-set and a functional category. We illustrate the NEA method using gene and protein expression data from a lung cancer study.</p> <p>Conclusions</p> <p>The results indicate that the NEA method is more powerful than the traditional GEA, primarily because the relationships between gene sets were more strongly captured by network connectivity rather than by simple overlaps.</p

    Regulation of CD4+NKG2D+ Th1 cells in patients with metastatic melanoma treated with sorafenib : role of IL-15Rα and NKG2D triggering

    Get PDF
    Beyond cancer-cell intrinsic factors, the immune status of the host has a prognostic impact on patients with cancer and influences the effects of conventional chemotherapies. Metastatic melanoma is intrinsically immunogenic, thereby facilitating the search for immune biomarkers of clinical responses to cytotoxic agents. Here, we show that a multi-tyrosine kinase inhibitor, sorafenib, upregulates interleukin (IL)-15Rα in vitro and in vivo in patients with melanoma, and in conjunction with natural killer (NK) group 2D (NKG2D) ligands, contributes to the Th1 polarization and accumulation of peripheral CD4+NKG2D+ T cells. Hence, the increase of blood CD4+NKG2D+ T cells after two cycles of sorafenib (combined with temozolomide) was associated with prolonged survival in a prospective phase I/II trial enrolling 63 patients with metastatic melanoma who did not receive vemurafenib nor immune checkpoint-blocking antibodies. In contrast, in metastatic melanoma patients treated with classical treatment modalities, this CD4+NKG2D+ subset failed to correlate with prognosis. These findings indicate that sorafenib may be used as an "adjuvant" molecule capable of inducing or restoring IL-15Rα/IL-15 in tumors expressing MHCclass I-related chain A/B (MICA/B) and on circulating monocytes of responding patients, hereby contributing to the bioactivity of NKG2D+ Th1 cells.peer-reviewe

    General resources in Genetics and/or Oncology

    Get PDF
    Review on General resources in Genetics and/or Oncolog

    Internet databases and resources for cytogenetics and cytogenomics

    Get PDF
    Review on Internet databases and resources for cytogenetics and cytogenomic

    General resources in Genetics and/or Oncology

    Get PDF
    Review on General resources in Genetics and/or Oncolog

    Inhibition of Chk1 Kills Tetraploid Tumor Cells through a p53-Dependent Pathway

    Get PDF
    Tetraploidy constitutes an adaptation to stress and an intermediate step between euploidy and aneuploidy in oncogenesis. Tetraploid cells are particularly resistant against genotoxic stress including radiotherapy and chemotherapy. Here, we designed a strategy to preferentially kill tetraploid tumor cells. Depletion of checkpoint kinase-1 (Chk1) by siRNAs, transfection with dominant-negative Chk1 mutants or pharmacological Chk1 inhibition killed tetraploid colon cancer cells yet had minor effects on their diploid counterparts. Chk1 inhibition abolished the spindle assembly checkpoint and caused premature and abnormal mitoses that led to p53 activation and cell death at a higher frequency in tetraploid than in diploid cells. Similarly, abolition of the spindle checkpoint by knockdown of Bub1, BubR1 or Mad2 induced p53-dependent apoptosis of tetraploid cells. Chk1 inhibition reversed the cisplatin resistance of tetraploid cells in vitro and in vivo, in xenografted human cancers. Chk1 inhibition activated p53-regulated transcripts including Puma/BBC3 in tetraploid but not in diploid tumor cells. Altogether, our results demonstrate that, in tetraploid tumor cells, the inhibition of Chk1 sequentially triggers aberrant mitosis, p53 activation and Puma/BBC3-dependent mitochondrial apoptosis
    corecore